

GET A QUOTE

PH785DBR Mercury Series

PH785DBR Mercury Series High-Power Single-Frequency Laser Diode 785 nm Laser Diode in Mercury™ TOSA Package

Technology

- DBR Single-Frequency Laser Chip
- AlGaAs QW Active Layer

Features

- Robust, monolithic die design
- Pulsed operation for spectral stability at short pulse lengths
- Package contains TEC cooling with precise thermistor control
- High Slope Efficiency

• Hermetic package for high reliability

Description

The 785nm Mercury™ series of high-power edge-emitting lasers are based on Photodigm's

advanced single-frequency laser technology. It provides a diffraction limited, single lateral and longitudinal mode beam in a compact hermetic package. Facets are passivated for high-power reliability. Applications include mobile spectroscopy instrumentation where durability and reliability are essential.

Absolute Maximum Rating

Parameter	Symbol	Unit	Min	Max
Storage Temperature	T _{STG}	°C	0	80
Operating Temperature	Тор	°C	5.0	70
CW Laser Forward Current, T=25°C	I _F	mA	-	**
Laser Reverse Voltage	V_R	V	-	0.0
TEC Current	I _{TEC}	А	-1.1	1.1
TEC Voltage	V _{TEC}	V	-3.0	3.0

Thermistor Current	I _{THRM}	mA	-	1.0
Thermistor Voltage	V _{THRM}	\ \	-	10

CW Characteristics at $T_C = 25$ °C unless otherwise specified

Parameter	Symbol	Unit	Min	Тур	Max
Center Wavelength @ 150mA	λς	nm	783	785	787
Optical Output Power	Po	mW	See Power Options Call- out		
Slope Efficiency	η_{d}	W/A	0.75	0.85	-
Threshold Current	I _{th}	mA	-	50	80
Laser Series Resistance	R _S	Ω	-	2.0	2.5
Laser Forward Voltage @ 150mA	V _F	V	-	2.0	2.5

^{**}Do not exceed drive current or operating power of supplied LIV

Thermistor Resistance @ 25°C	R _T	ΚΩ	-	10	-
Laser Line Width	Δν	MHz	-	0.5	1.0
Beam Divergence @ FWHM	θιι Χ θ⊥	0	-	6 X 28	8 X 32
Side Mode Suppression Ratio	SMSR	dB	-30	-	-
Laser Polarization				TE	
Mode Structure			Fundamental Mode		

Handling Precautions

These devices are sensitive to ESD. When handling the module, grounded work area and wrist strap must be used. Always store in an antistatic container with all leads shorted together.

How To Order

Part number example: PH785DBR080TS. Assign optical power from those available. Use a three-digit format for all power entries. These devices are sensitive to ESD.

The Mercury[™] Package

Minimum Power (mW)

040 120

080 180

Mercury[™] with HSM Mercury[™]

Photodigm VVV

Blog Careers FAQ Literature News Tradeshows

1155 E. Collins Blvd., Suite 200 Richardson TX 75081

972-235-7584

© 2019 Photodigm, Inc.