C-Band 40 GHz QPSK (IQ) LiNbO³ Modulator

Description

GKER 40 GHz QPSK modulator design is based on a dual parallel structure of two Mach-Zehnder modulators (DP-MZM) embedded in a Mach Zehnder Super-Structure. Each internal modulator is designed to have EO bandwidth above 20 GHz. Monitor photodiode is provided for automatic bias control (ABC).

Key Features

- Nested Mach-Zehnder Modulators
- X-Cut Lithium Niobate
- Operating at 1525 1570 nm
- High Bandwidth operating > 30 GHz
- High Extinction Ratio
- Low Optical Insertion Loss
- Excellent Linearity

Applications

OFDM Coding | QPSK Coding | QAM Coding

CS-SSB (Carrier Suppressed Single Side Band)

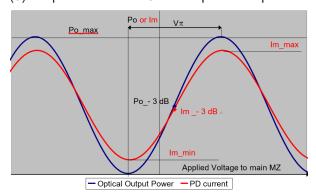
FMCW LiDAR

Email: sales@GKERPhotonics.com

Absolute Maximum Ratings

Parameter	Operating Conditions (1)	Min	Max.	Unit
Maximum Input Power (Electrical)	RF port AC coupled	-	10	Vpk-pk
Maximum Input Power (Optical)	CW	-	100	mW
DC Voltage at DC port	-	-40	40	V
Monitor Photodiode Reverse Current	-	-	< 2	mA
Monitor Photodiode Forward Current	-	-	< 10	mA
Monitor Photodiode Reverse Voltage	-	-	< 15	V
Operating Case Temperature	-	-5	+75	°C
Maximum Top Variation Rate	-	-	5	°C/min
Storage Temperature	-	-	+85	°C
Operating Humidity	Non-Condensing	5	85	%
Leads Soldering Temperature	-	-	250	°C
Leads Soldering Time	-	-	10	s

GKER Photonics Co.,ltd

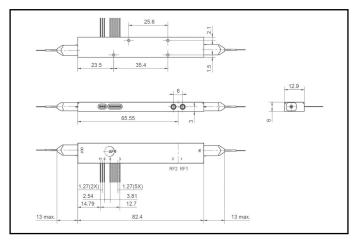


Specifications

Characterisitcs	Operating Conditions (1)	Min	Тур.	Max	Unit
Optical					
Operating Wavelength Range	-	1525	-	1570	nm
Insertion Loss, IL ²	EOL, - 5 ~ + 75 ℃, over C-Band	-	5.0	7.0	dB
Phase-MZI Optical Extinction Ratio	Measured @ DC	24	-	-	dB
RF-MZI Optical Extinction Ratio	Measured @ DC	24	2.9	-	dB
PER	-	20	-	-	dB
Optical Return Loss, RL	Input & Output	40	-	-	dB
Electrical RF Ports					
RF-MZI Vπ	@ 1 kHz	-	5.0	7.0	V
RF-MZO - 3 dB E/O Bandwidth	wrt. 2 GHz	20	23	-	GHz
RF-MZI S ₂₁ Flatness	300 MHz - 20 GHz	-1	-	1	dB
Amplitude difference between	-	-1	-	1	dB
RF-MZIs (Difference between S ₂₁ s)					
RF Delay between RF-MZIs	-	-5	-	5	ps
RF-MZI Electrical Return Loss S11	40 MHz - 17 GHz	10	12	-	dB
	17 GHz - 30 GHz	8	10	-	
Electrical Bias Ports (4)					
RF MZI Bias Vπ Voltage	@ 1 kHz	-	7	8	V
Phase MZI Bias Vπ Voltage	@ 1 kHz	-	7	8	V
RF and Phase MZI Bias Vπ Voltage	C-Band wrt 1550 nm	-5	-	5	%
variation over Wavelength					
Bias port impedance	@ DC	1	-	-	МΩ
Monitor Photodiode (5)					
Responsivity (6)	-	20	-	120	mA/W
Linearity	-	-10	-	10	%
Phase Error (7)(8)	PD is not inverting	-5	-	5	Degree

GKER Photonics Co.,ltd

- (1) Top = 25 ℃, BOL, wavelength at 1550 m, unless otherwise specified.
- (2) Insertion loss has to be measured at the maximum of the modulator's transfer function, and exclude connectors
- (3) Test set up to be agreed.
- (4) Each bias section has two control pins: to ensire EOL bias voltage range, during operation, bias electrode of all MZs should be supplied with differential voltage.
- (5) Single PD monitors overall output.
- (6) PD responsivity definition (see also picture below)
- Inner MZs set to maximum transmission.
- The voltage is applied to the outer (phase) MZ
- Responsivity: R = (Im_- 3 dB) / (Pout_- 3 dB)
- Im_ 3 dB is the photodiode current when output optical power is 3 dB from maximum.
- Pout_- 3 dB is the output optical power at 3 dB from maxximum.
- (7) The PD phase error is the difference (in modulator phase) between the maximum/minimum of the PD output and the maximum/minimum of the modulator optical output.
- (8) PD phase error of ±5° correspond to a phase error of ±2.8%.



Pin-Out and Fiber Specifications

SMPM male	
DC pins	
Polarization Maintaining Fiber, PMF - Panda (Corning/Fujikura PM15-U25D), 900 μm	
loose tube, > 1.5 m	
Polarization Maintaining Fiber, PMF - Panda (Corning/Fujikura PM15-U25D), 900 μm	
loose tube, > 1.5 m 15 mm	

Email: sales@GKERPhotonics.com

Mechanical Outline

GKER Photonics Co., ltd

Pin-Out Information

Pin	Name/Description	Note
1	RF. 1	RF Input (SMPM male)
2	RF. 2	RF Input (SMPM male)
3	BIAS 2+	Bias wrt RF.2 +V
4	BIAS 2-	Bias wrt RF.2 -V
5	BIAS 1+	Bias wrt RF.1 +V
6	BIAS 1-	Bias wrt RF.1 -V
7	Bias PH+	Bias Phase +V
8	Bias PH-	Bias Phase -V
9	PD Cathode	-ve
10	PD Anode	+ve
11	GND	Ground

Note: The pin# 3&4, 5&6, 7&8 pin pair doesn't need to be exact as above table, but any pin pair just need to be of opposite voltage.

Electrostatic Discharge (ESD)

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in electrical component failure

RoHS Compliance

GKER is fully committed to environment protection and sustainable development and has set in place a comprehensive program for removing polluting and hazardous substrates from all of its products. This product is RoHS compliant.

Reliability Requirements

This modulator is designed to meet Telcordia GR-468-Core requirements and hermetically sealed.

Ordering Information:

For more information on this product, optional optical connectors and their availability, please contact your local GKER account manager or GKERTdirectly at sales@GKERPhotonics.com

Product Description	Part Number	
40G QPSK, C-Band 40 GHz QPSK (IQ) LiNbO3 modulator		
(PM fiber, 900 μm loose tube, > 1.5 m, no connectors)	792001590	