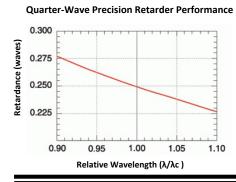
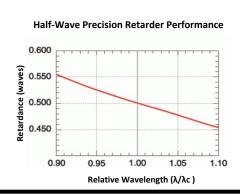
Standard & Precision Waveplates (Retarders)

Meadowlark has added a standard option to our precision waveplate (retarder) line. Meadowlark Optics specializes in precision polymer retarders for the visible to near infrared region. Our Retarders have the highest optical quality and tightest retardance tolerance of all polymer retarders. These true zero-order Retarders consist of a birefringent polymer cemented between two precision polished, optically flat N-BK7 windows. The retarder fast axis is conveniently marked for quick and easy reference.


The Precision Retarder has a retardance accuracy of $\leq \lambda/350$, with a wavefront distortion of $\leq \lambda/5$. The standard retarder has a retardance accuracy of $\leq \lambda/150$, with a wavefront distortion of $\leq \lambda/3$. Both Retarders are supplied with a broadband antireflection coating. Optical transmittance of a Precision Retarder is typically greater than 97%. The approximate retardance δ at a wavelength λ that is different from the center wavelength λ c is given by:


$$\delta \approx \delta c(\lambda c/\lambda)$$

where δc is the retardance at λc .

This relationship is very important when using sources which vary in wavelength from their nominal value. The two graphs show the retardance behavior as a function of relative wavelength for a quarter- and half-wave retarder, respectively. The Mueller calculus can be used to calculate the transmitted polarization state based upon the retardance differences from the ideal case. Since polymer retarders are true zero-order devices, they offer the significant advantage of improved angular performance. You can expect <1% retardance change over $\pm 30^{\circ}$ incidence angle.

Meadowlark Optics has developed precision ellipsometric techniques that can measure retardance to $\lambda/1000$. Our metrology for these measurements rivals the best in the industry. You can have absolute confidence that the calibration measurements supplied with your retarder are of the highest accuracy obtainable.

Key Features

• • •

True zero-order retarders

Excellent off-axis performance

Unequaled measured accuracy

Less temperature dependence than quartz waveplates

Lower cost than compound zero-order waveplates

Better angular acceptance than compound zero-order quartz waveplates

Waveplate Suite

• •

Standard Retarder
Precision Retarder
Precision Achromatic Retarder
Precision Superachromatic Retarder
Dual-Wavelength Retarder
Wide Field Retarder
Liquid Crystal Variable Retarder
Polymer Film Retarder
Raptor Applied Polymer Retarder
Large Aperture Retarder
Bi-Crystalline Achromatic Retarder

SPECIFICATIONS						
	Standard Waveplate	Precision Waveplate				
Retarder Material	Birefringent Polymer					
Substrate Material	Fused Silica	N-BK7				
Standard Wavelengths	532, 632, 670, 780, 850, 1064, and 1550 nm	Any Wavelength				
Custom Wavelengths	400 – 1800 nm (please specify)					
Standard Retardances	$\lambda/2$ and $\lambda/4$	Any Retardance				
Retardance Accuracy	≤ \ <i>l</i> /150	≤ λ/350				
Retardance Change (at 30°tilt)	$\leq \lambda/32$ (Half-Wave) and $\leq \lambda/59$ (Quarter-Wave)					
Transmitted Wavefront Distortion	≤ λ/ 3	≤ λ /5				
Surface Quality (scratch-dig)	40 – 20					
Beam Deviation	≤1 arc-min					
Reflectance (per surface)	≤ 0.5% at normal incidence					
Threshold	500 W/cm², CW 600 mJ/cm², 20 ns, visible, 4 J/cm², 20 ns, 1064 nm					
Operating Temperature Range	-20°C to 50°C					

		ORDERING INFORMATIO	N – Precision Waveplate		
	Clear Aperture in. (mm)	Dimensions ± 0.005 in. (± 0.13 mm)	Thickness ± 0.020 in. (±0.51 mm)	Part Number	
	Half-Wave				
	0.40 (10.2)	Ø1.000 (Ø25.4)	0.250 (6.35)	NHM $-050 - \lambda$	
eq	0.70 (17.8)	Ø1.000 (Ø25.4)	0.350 (8.9)	$NHM-100-\lambda$	
Mounted	1.20 (30.5)	Ø2.000 (Ø50.8)	0.500 (12.7)	$NHM - 200 - \lambda$	
ŝ	Quarter-Wave				
	0.40 (10.2)	Ø1.000 (Ø25.4)	0.250 (6.35)	NQM – 050 – λ	
	0.70 (17.8)	Ø1.000 (Ø25.4)	0.350 (8.9)	$NQM - 100 - \lambda$	
	1.20 (30.5)	Ø2.000 (Ø50.8)	0.500 (12.7)	NQM – 200 – λ	
	Clear Aperture in. (mm)	Dimensions +0/-0.010 in. (+0/-0.25 mm)	Thickness ± 0.020 in. (± 0.51 mm)	Part Number	
	Half-Wave				
þ	0.40 (10.2)	Ø0.500 (Ø12.70)	0.130 (3.3)	$NH - 050 - \lambda$	
unte	0.80 (20.3)	Ø1.000 (Ø25.4)	0.260 (6.3)	$NH - 100 - \lambda$	
Unmounted	1.60 (40.6)	Ø2.000 (Ø50.8)	0.510 (13.0)	NH – 200 – λ	
5	Quarter-Wave				
	0.40 (10.2)	Ø0.500 (Ø12.70)	0.130 (3.3)	$NQ - 050 - \lambda$	
	0.80 (20.3)	Ø1.000 (Ø25.4)	0.260 (6.3)	$NQ - 100 - \lambda$	
	1.60 (40.6)	Ø2.000 (Ø50.8)	0.510 (13.0)	NQ – 200 – λ	

	ORDERING INFORMATION – Standard Waveplate				
Mounted	Clear Aperture in. (mm)	Dimensions ± 0.005 in. (± 0.13 mm)	Thickness ± 0.020 in. (±0.51 mm)	Part Number	
	Half-Wave				
	0.40 (10.2)	Ø1.000 (Ø25.4)	0.25 (6.35)	$RHM - 050 - \lambda$	
	Quarter-Wave				
	0.40 (10.2)	Ø1.000 (Ø25.4)	0.25 (6.35)	$RQM - 050 - \lambda$	

Please specify your center wavelength λ in nanometers when ordering. Custom sizes and shapes with improved transmitted wavefront distortion and/or beam deviation are available. Please call for a quote.

